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Abstract. A new type of collective electromagnetic excitation, namely surface polaritons
(SP)—in a 2D electronic layer in a high magnetic field, is predicted. We have found the spectrum,
damping, and polarization of the SP over a wide range of frequenciesω and wavevectorsk. It is
shown that near the cyclotron resonance (CR)(ω ∼ � = eB/mc) the phase velocity of the SP
is drastically slowed down and the group velocity is quantized into fundamental steps defined by
the fine-structure constantα = e2/h̄c. In the vicinity of a CR subharmonic(ω ∼ 2�), negative
(anomalous) dispersion of the SP occurs. The relaxation of electrons in the 2D layer gives
rise to a new dissipative collective threshold-type mode of the SP. We suggest a method for
calculating the kinetic coefficients for the 2D electronic layer in a high magnetic field, using the
Wigner distribution function formalism, and determine their spatial and frequency dispersions.
Using this method we have calculated the lineshapes of the CR, which are in good agreement
with experimental data.

1. Introduction

Since the discovery of the quantum Hall effect (QHE) [1–3], a number of authors have
investigated the weak damping of collective electromagnetic waves in 2D electronic layers
in a strong magnetic fieldB [3, 4, 5, 6]. The quantization of the Hall conductivity and the
vanishingly small dissipative (longitudinal) conductivity lead, under the QHE conditions, to
spatial and frequency dispersion in the system and hence to the generation of an unusually
slow collective wave, whose dispersion characteristics are also quantized.

In this paper a new type of collective electromagnetic excitation in a 2D electronic
system (2DES) in a high magnetic field (under the QHE conditions [9]) is predicted, namely,
the slow surface polaritons (SP).

Surface polaritons are electromagnetic waves that propagate along a flat surface
separating two dielectric media and whose amplitudes decay exponentially with increasing
distance from the surface into either medium. In recent years considerable interest arose in
the study of the SP in 2DES [7], and superlattices (see, e.g., [8]). In [5] the magnetoplasma
oscillation in 2DES in a magnetic field was investigated. In that it was shown that near the
cyclotron resonance (CR) the SP slowed down, but neither that work [5] nor other studies
considered the effects determined by the Hall conductivity quantization in a high magnetic
field and also neither did they consider the conductivity spatial dispersion effects.

In our paper we calculate the spectrum, damping, and polarization of that wave over a
wide range of frequenciesω and wavevectorsk. The phase velocity of the SP is drastically
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slowed down near the principal cyclotron resonance (ω ∼ �, where� = eB/mc is the
cyclotron frequency) and their group velocity is quantized into fundamental jumps, whose
magnitude is determined by the fine-structure constantα = e2/h̄c. The number of slow SP
modes is determined by the magnitude of the Landau-level filling factorℵ = π`2n (where
` = (ch̄/eB)1/2 is the magnetic length, andn the density of 2D electrons), i.e., by the value
of the quantized Hall conductivity. In the vicinity of the CR subharmonic(ω ∼ 2�), the
negative (anomalous) dispersion of SP (see figure 3, later) occurs. Besides this, a new type
of SP appears near the CR, which is dissipative in nature. The condition of existence of that
additional SP is determined by the quantized threshold criterion, which allows determination
of the relaxation frequency at low temperature to an accuracy ofα (see equation (3.17)).

The QHE has been intensively studied with the use of methods of modern condensed-
matter theory [3]. The integer QHE (IQHE) is thought to be caused by localization of
electrons in the two-dimensional systems, and the fractional QHE (FQHE) is due to electron–
electron interaction, which leads to the generation of a correlated many-particle ground state
[3] at distinct fractional values of the Landau-level filling factorℵ. As this takes place,
the paradox lies in the fact that the presence of ‘dirt’ is the necessary condition for the
localization–delocalization phase transition effect—although it is well known that for the
observation of QHE, and, particularly FQHE, the use of perfect samples with a high mobility
is required. QHE is one of the problems of thepostmodern quantum mechanics(to use the
term of Harris), discussed in four papers inPhysics Todayin 1993 [10]. The technological
advances of the last decade have led to fabrication being achieved of two-dimensional
systems in which the ballistic (or quasiballistic) transport with large mean free paths can be
realized.

From the above reasoning we suggest a simple method, which uses almost solely the
Pauli principle, for the description of the kinetics of electrons in 2D systems placed in a
strong quantizing magnetic fieldB. By using the Wigner distribution function [11] we
derive the kinetic characteristics of a 2D electronic gas under the QHE conditions and
find their spatial and frequency dispersions. By means of these results we can adequately
describe the d.c. effects of IQHE, as well as the lineshape of the CR under the IQHE
conditions and hence the dynamics of collective electromagnetic excitations under QHE
conditions.

The article is organized as follows. In section 2 we use the Wigner distribution function
for describing the transport phenomena in a 2DES under QHE conditions. We calculate
the conductivity tensor with a spatial and frequency dispersion. In section 3 we present
the electrodynamics in 2DES in the high magnetic fields (the QHE effect). We derive the
dispersion relation for electromagnetic surface waves and discuss the dispersion, polarization
and damping for the quantized SP in this system. We conclude the paper with a brief
summary of results and possible applications (section 4).

2. Transport in the 2DES in a high magnetic field

To find the conductivity tensor accounting for the spatial and frequency dispersion in a
2D electronic gas placed in a high quantizing magnetic fieldB (under QHE conditions)
oriented normally to the 2D layer (see figure 1), we will apply the Wigner distribution
function [11, 12, 13]:

f W
p (r) =

∫
dr′ Tr{ρ̂ exp

[
−i

(
p + e

c
A(r)

)
r′
]

ψ+(r − r′/2)ψ(r + r′/2)}. (2.1)
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Figure 1. The geometry of the structure of the 2D electronic layer embedded in a dielectric
medium with dielectric constantε.

Here ρ̂ is the statistical operator of the system;ψ+(r) and ψ(r) are the Fermi
operators for generation and annihilation, respectively, of particles at pointr; and A is
the vector potential of the electromagnetic field. In the case where the scale of the spatial
inhomogeneity exceeds both the radius of interaction between the particles and the de Broglie
electron wavelength, the kinetic equation for the Wigner distribution function, equation (2.1),
takes a form [11–13] equivalent to the classical kinetic equation:

∂f W
p

∂t
+ v

∂f W
p

∂r
+ e

{
E + 1

c
[v, B]

}
∂f W

p

∂p
= Î {f W

p }. (2.2)

HereE andB are the electric field and the magnetic induction vectors;e is the charge on
the electron, andv is the velocity of the conduction electrons.

In the case under consideration, if the 2D electronic system is infinite in thexy-plane
(see figure 1), then the typical scale of inhomogeneity is the wavelengthk−1 of the collective
electromagnetic wave. Thus, the existence criteria for equation (2.2) arek � n1/2 (since
with weak screeningn−1/2 is the characteristic length of interaction between the particles)
andk` � 1 (since in a strong magnetic field the magnetic length` = (ch̄/eB)1/2 represents
the de Broglie wavelength of electrons). The collision integral,Î {f W

p }, differs essentially

from the classical collision integral, since the quantum transitions accounted for byÎ {f W
p }

reflect the character of the statistics obeyed by the particles, and the distinction of the Wigner
distribution function from the classical one [12]. The equilibrium Wigner distribution
function sets the collision integral,̂I {f W

p }, to zero. The equilibrium Wigner function can
be expressed via its value for an equilibrium ensemble of quantum states of an electron in
a magnetic fieldB. By using the definition given as equation (2.1) and substituting the
wavefunctions of an electron in an electromagnetic field into equation (2.1), we obtain for
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the spinless electrons [12, 13]

f0(ε) =
∞∑

s=o

nF

[
h̄�(s + 1

2) − µ

T

]
0s

(
ε

h̄�

)
0s(x) = 2(−1)s exp(−2x)L(0)

s (4x)

nF (x) = (1 + ex)−1.

(2.3)

Hereε = p2/2m is the energy of 2D electrons andL(0)
s (x) the Laguerre polynomial. If we

replace the summation overs by an integration, then for ¯h� � T (T is the temperature)
equation (2.3) transforms into an equilibrium Fermi distribution function (µ is the chemical
potential).

With the knowledge of the equilibrium Wigner distribution function we can describe
all of the thermodynamical relations. In this paper we will consider the 2DES when
the chemical potentialµ is constant over the entire system. The relation between the
electron densityn and the chemical potentialµ in a strong magnetic field can be found,
as usual, from the normalization condition. We are considering the 2DES with a fixed
value of chemical potentialµ. The real 2DES is in fact extremely inhomogeneous in one
of the directions of the 3D system. Examples of two-dimensional electron systems occur
in the inversion layers of metal–oxide–semiconductor field-effect transistors (MOSFETs)
and GaAs−Al xGa1−xAs heterostructures at low temperature. In such systems the chemical
potential µ is determined for the 2DES as an equilibrium value ofµ for the extremely
inhomogeneous three-dimensional systems. The densityn of 2D electrons is the average of
f0(ε) (equation (2.3)). As a result we obtain after the averaging

ℵ = π`2n =
∞∑

s=0

nF

[
h̄�(s + 1

2) − µ

T

]
. (2.4)

It is shown that the Landau-level filling factorℵ assumes only positive integer values
if T � h̄�, µ. The fact that the filling factorℵ can assume only integer values leads to the
IQHE. However, equation (2.4) contains a contradiction. Indeed, why should the ratio of
two independent values—which the electron densityn and the magnetic inductionB in the
sample are—take only integer values? It is well known that the mean value of a microscopic
magnetic field is the magnetic inductionB. The value ofB in the sample should be
found from the formulaH = B − 4πM (B), whereH is the external magnetic field and
M (B) the magnetic moment. If the temperature is not too low, thenM(B) � B and
the magnetic induction valueB differs only slightly fromH . As temperature is decreased,
the amplitude of oscillations of the magnetic momentM (B) increases and a situation
appears in which regions ofH -values corresponding to three different values ofB show
up. This ambiguity indicates an instability of states similar to that found on the Van
der Waals curve of the equation of state [14–16]. In other words, at such values of the
external magnetic fields, diamagnetic phase transitions take place in the system, at which
an inhomogeneous state (domain type and (or) periodic structures) appears in the system,
when the magnetic inductionB and the electron densityn become coordinate-dependent
functions. In the vicinity of such phase transitions and for the inhomogeneous states, the
scaling-type dependencies of the conductivity on the magnetic field and singularities at the
fractional values of the Landau-level filling factorℵ should appear due to the scaling-type
invariance (see [14, 15, 16]). This kind of behaviour should result in singularities in the
Hall conductivity and in a longitudinal (dissipative) conductivity of the 2D electronic gas
at the fractional values of the filling factorℵ, i.e., lead to the FQHE. In particular, when
the magnetic induction and the electron density are characterized by an inhomogeneous
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structure, the splitting of states and the additional gaps might originate in the electron
spectrum, and the spectrum degeneracy in the orbit centre coordinate in the magnetic field
may be lifted.

Besides this, an additional drift of electrons [17] can arise in a weakly inhomogeneous
magnetic field which can give an additional contribution to the Hall current. However,
far away from the diamagnetic phase transition [14, 15, 16] equilibrium states exist; the
electron density is independent of the coordinates, and the magnetic inductionB assumes
a sufficient value to satisfy relation (2.4), and the Landau-level filling factor is an integer
value, i.e., the IQHE conditions are met. Thus, in this paper we will analyse the electron
kinetics under the IQHE conditions.

The formalism used in this paper is based on the assumption that the kinetic equation
for the Wigner distribution function can also involve the collision integral. It is well known
(see, e.g., [7]) that this can be done if the crystal periodicity violation, which is the source
of electron scattering, does not (or does weakly) distort the electron spectrum of the ideal
crystal. This way a weak disorder can be taken into account within the WDF formalism. Of
course, the impurity scattering in collision integral form for the Wigner distribution function
must be treated self-consistently using (e.g.) the self-consistent Born approximation, which
is the simplest treatment that is free from divergences. In other words, the collision
integral can be described in terms of a relaxation frequency depending on electron energy.
In particular, the formalism allows one to automatically take into account the effect of
Landau-level broadening due to collisions with impurities. (In the case where the impurity
potential is a short-range one, the collision frequencies are not energy dependent.) It is
clear that for the case of high mobility current carriers and sufficiently high frequency of
the electromagnetic field, the approximation for the collision integral is justified. The forms
of the electron–phonon and electron–impurity collision integrals, equation (2.3), are too
complicated [12]. However, we will consider here the effects determined by the linear
response to the electric field. In this case the distribution function,f W

p , can be found in an
approximation linear in the external field,E. It is well known [12] that for a sample with
a high electron mobility and for describing high-frequency effects (ω � ν), the collision
integral can be represented in theτ -approximation, where the mean free path timeτ is
determined by the momentum relaxation frequency, being a function of the electron energy,
ε. In other words, for this quasiballistic regime we can find the Wigner distribution function
in the form

f W
p = f0(ε) + f1 (2.5)

wheref0(ε) is the equilibrium distribution function in a high magnetic field, equation (2.3),
andf1(t, p, r) is the correction to the Wigner distribution function, which is determined by
the electric fieldE. The collision integral,Î {f W

p }, will be written as

Î {f W
p } = −ν(ε)f1. (2.6)

In the general case we will assume the electric field to be a function of coordinates and
time. Then for the Fourier transform of the current density,j, and the electric field,E, one
obtains the linear relations

jα(ω, k) = σαβ(ω, k) Eβ(ω, k) (2.7)

Eα(r, t) =
∫

d2k dω

(2π)3
Eα(ω, k) ei(k·r−ωt) (2.8)

Eα(ω, k) =
∫

d2k dω Eα(ω, k) ei(k·r−ωt). (2.9)
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The Fourier transform of the conductivity tensor,σαβ(ω, k), accounting for the
spatial and frequency dispersion, can be found by using the Wigner distribution function,
equations (2.2), (2.3) and (2.5). Thus, in the general case we have

σαβ(ω, k) = 2e2

h

∞∑
s=0

nF

{
h̄�(s + 1

2) − µ

T

}∫ ∞

0
dξ

(π2ξ/2)

sinh[πγ (ξ)]

∂0s(ξ)

∂ξ
Dαβ(ξ). (2.10)

Here the tensor components,Dαβ(ξ), are given by

Dxx(ξ) = m1(ξ) + m2(ξ) + 2m3(ξ) cos 2β

Dyy(ξ) = m1(ξ) + m2(ξ) − 2m3(ξ) cos 2β

Dxy(ξ) = −im1(ξ) + im2(ξ) + 2m3(ξ) sin 2β

Dyx(ξ) = im1(ξ) − im2(ξ) + 2m3(ξ) sin 2β.

(2.11)

The functionsm1(ξ), m2(ξ) andm3(ξ) are defined by the expressions

m1(ξ) = J−iγ−1(z)Jiγ+1(z)

m2(ξ) = J−iγ+1(z)Jiγ−1(z)

m3(ξ) = Jiγ+1(z)J−iγ+1(z)

(2.12)

where

z =
√

2ξkl γ = ν(ξh̄�) − iω

�
k =

√
k2
x + k2

y

cosβ = kx

k
sinβ = −ky

k
.

Note that the Fourier transform of the conductivity, equations (2.10)–(2.12), contains terms
proportional to cos 2β and sin 2β, whose appearance results from the two dimensionality
of the electronic gas. They violate the symmetry of the kinetic coefficients for the Fourier
transform ofσαβ(ω, k). Such polarizable terms may be important for the polarization of
electromagnetic eigenoscillations in 2D electronic systems. The integration over d2r re-
establishes the symmetry.

One can easily see that generally the conductivity tensor experiences resonance
oscillations, namely, of the cyclotron resonance type in the case of a strong spatial dispersion
(whenk`∗ � 1, wherè ∗ is the mean free path) on the multiple harmonics (subharmonics of
the CR whenω = s�, s = 1, 2, . . .). However, the case of a strong spatial dispersion can be
practically realized only at very high frequencies. As is easy to see from equation (2.3) and
from the expression for the conductivity tensor, the strong quantization in a magnetic field
‘destroys the Fermi surface’ and the conductivity is due to all of the electrons with various
energies. Thus, the frequency dispersion of the conductivity (and the spatial dispersion as
well) is in essence defined by the form of the functionν = ν(ε). At low frequencies, when
ω 6 ν(ε), it might be an ‘indicator’ of the functionν(ε). It is also clear that the lineshape
of the CR can be essentially dependent on the functionν = ν(ε) [15, 18]. The form
of the longitudinal d.c. conductivity (σxx = σyy , when ω = 0, k = 0) is also drastically
dependent on the type of the functionν = ν(ε) [18]. The lineshape of the CR can be
changed if the electron effective massm = m(ε) depends on the electron energyε, when
the dispersion law of conduction electrons differs from the quadratic one [19]. In this paper
we will assume that the mobility is very high and we will find the conductivity when the
relaxation frequency is an effective constant, i.e.,ν = constant [20]. We will consider the
most realistic case, where the spatial dispersion is sufficiently weak, i.e.,

k` � 1. (2.13)
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Figure 2. The lineshape of the cyclotron resonance in a 2DES under the QHE conditions.

Then the Fourier transform of the conductivity tensor can be obtained in the form

σαβ = 2e2

h

ℵ
1 + γ 2

{
Bαβ − (k`)2

2γ

(
1 + ℵ

2

)
Cαβ

}
(2.14)

where

Bxx = Byy = γ Bxy = −Byx = 1

Cxx = a + cos 2β Cyy = a − cos2β

Cxy = −b − sin 2β Cyx = b − sin 2β

a = 2(γ 2 + 2)

γ 2 + 4
b = 6γ

γ 2 + 4
.

(2.15)
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Figure 2. (Continued)

Let us summarize the formulae for the resistance tensor in the d.c. case, whenω → 0,
k → 0 (the IQHE):

ρxx = σxx

σ 2
xx + σ 2

xy

= h

2e2

γ

ℵ (2.16)

ρxy = σxy

σ 2
xx + σ 2

xy

= h

2e2

1

ℵ . (2.17)

As can be seen, equations (2.16) and (2.17) are good enough to describe the classical
picture of the IQHE [3, 21], even forν = constant. Equation (2.14) and equation (2.15)
show that ifν = constant then the relationρxx /ρxy = γ = ν/� should hold—which can be
observed under the IQHE conditions. The deviation from this simple relation demonstrates
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the energy dependence of the relaxation frequency,ν = ν(ε) [21]. Here we will show the
lineshape of the CR (the high-frequency absorption∼Reσxx) for various frequencies,ω, as
a function of the magnetic field (see figure 2). Obviously, the lineshape of the CR is highly
sensitive to the CR position. In the case when the line centre is located at the centre of the
IQHE plateau, it shows kinks at the points where the jumps of the QHE occur. Figure 2 (left)
shows the lineshape of the cyclotron resonance in the 2DES calculated for GaAs/GaAlAs
from formula (2.14), for the temperatureT = 50 mK (k → 0) andν = 2 × 1011 s−1. The
wide resonance line, which captures several steps of the QHE for the rather low frequency
ω, when the CR occurs at a quite small value of the magnetic field. It is shown that the
additional structure of the line came about from the interference of singularities of the CR
and the QHE. If the centre of the CR line is located near a QHE step, then the amplitude of
the CR is increased. Figure 2 (right) shows the narrow resonance lines, which are found for
the higher frequenciesω located in the range of one step of the QHE. It is shown that the
structure of the line whose centre is in the centre of the Hall plateau exists on the wings of
a line at the values of the magnetic fieldB corresponding to the jump of the Landau-level
filling factor ℵ. The amplitude of the CR line is increased when the centre of the CR line
is located at the point of the jump of the Landau-level filling factorℵ (the lines for the
frequenciesω3 = 1.00 × 1013 s−1, ω5 = 1.35 × 1013 s−1). Such features of the CR line
were observed by a number of authors [22].

3. Electrodynamics of 2DES in a high magnetic field

The propagation of electromagnetic waves through systems with a 2D electronic gas in the
dielectric environment, placed in a strong magnetic field (see figure 1), is described by the
Maxwell equations for the scalar and vector potentials in the Lorentz gauge, namely

∇ · A + ε

c

∂ϕ

∂t
= 0. (3.1)

The potentials satisfy the usual wave equation [23, 24][
∇2 − ε

c2

(
∂

∂t

)2]
ϕ(r, t) = −4π

ε
ρtot (r, t) (3.2)[

∇2 − ε

c2

(
∂

∂t

)2]
A(r, t) = −4π

c
jtot (r, t). (3.3)

These values are related to the fields in equation (2.2) by

E = −∇ϕ − c−1 ∂A

∂t
B = rotA. (3.4)

Hereρtot = ρex +ρ is the total charge density in the system andjtot = jex + j the total
current density;ρex and jex are the external charge and current densities, respectively. In
the system under considerationρ ∼ j ∼ δ(z) [24] , so the charges and currents exist only
in the 2D electronic layer, and external currents and charges are absent from the system:
ρex = jex = 0. In this case the potentialsA andϕ can be found from the homogeneous set
of equations (3.2) and (3.3). Using the Fourier transformation, equation (2.7), and taking
into accountj(ω, k, z) = j(ω, k, 0)δ(z), we obtain

A(ω, k, z) = A0(ω, k)e−p|z| (3.5)

where

p =
√

k2 − ω2

c2
ε
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and Rep > 0. In other words, the system supports eigenoscillations in the form of a surface
wave pressed up against the 2D electronic layer (see figure 1). In this case the component
Az = 0, while the scalar potential can be found from the Lorentz gauge (2.17):

k · A = ωε

c
ϕ.

The current density in the 2D electronic layer can be represented in the form

jα(ω, k) = i
ω

c
σαβ(ω, k)

[
Aβ(ω, k, 0) − c2

εω2
kβkγ Aγ (ω, k, 0)

]
. (3.6)

Thus, the dispersion relation is found from the condition

A(ω, k, 0) = 2π

cp
j(ω, k, 0). (3.7)

This dispersion relation takes the form

D = Det

{
δαβ − 2π iω

c2p

[
σαβ(ω, k) − c2

εω2
σαγ (ω, k)kγ kβ

]}
= 0 (3.8)

whereδαb is the Kronecker delta.
Figure 3 presents the dispersion curves of the SP propagating in the system of figure 1.

The dispersion curves for the surface polariton on the boundary of a 2DES were calculated
for the various values of the Landau-level filling factorℵ (ℵ = 1, ℵ = 5, andℵ = 10). The
2DES is realized by the heterostructure GaAs/GaAlAs; the effective massm = 0.068m0;
and ε = 12. They-axis gives the real part of the frequency, and thex-axis gives the
wavenumber. It is seen that the spectrum of the SP is gapless at low frequencies (ω � �),
and that they exist both in the low-frequency regionω < � and in the high-frequency region
ω > �. In the low-frequency region, far away from the CR, the phase velocity of the SP is
close to the light velocityvd = c/

√
ε in the dielectric, which surrounds the 2D electronic

layer. In the high-frequency region and in the vicinity of the principal CP (ω ∼ �), the
phase velocity of the SP drastically decreases and they are transformed into slow waves.
In the frequency range� < ω < 2�, where`−1 � k � (ω/c)

√
ε, one can neglect the

retardation effect and the spatial dispersion in the conductivity tensor of equation (2.14).
The dispersion relation can be brought into the form

ω2 = �2 + 2πvnk�

ε
(3.9)

wherevn = (2e2/h)ℵ. It is easy to see that with� � vnk/ε (ℵ ∼ 1) the dispersion law
of the SP is linear (ω ∼ k), while in the opposite case,� � vnk/ε (or whenℵ � 1), the
dispersion law is of a square-root type (ω ∼ √

k).
Near the CR (ω ∼ �), the retardation effect cannot be neglected and the dispersion law

of the SP becomes

ω = � + �
vn

c

{
π�

cp1

(
p2

1c
2

ε�2
− 1

)
+ 2π2vn

εc

}
− iν. (3.10)

Here

p1 =
√

k2 − �2

c2
ε.

The value of the relative deceleration of the SP is determined by the fine-structure constant
α. The group velocity,vg = ∂ω/∂k, of the SP is quantized into fundamental steps in the
vicinity of the CR:

vg

vd

= 2
√

2αℵ√
ε

. (3.11)
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Figure 3. The dispersion curves for the surface polariton on the boundary of the 2DES calculated
for various values of the Landau-level filling factorℵ (ℵ = 1, ℵ = 5, andℵ = 10).

In other words, the deceleration of the wave near the CR is considerable, and the reason for
the quantization of the group velocity is the quantization of the Hall conductivity, i.e., in fact
the system possesses a fundamental parameter of the velocity dimension, the conductance
quantum 2e2/h. At the point of the CR the character of the conductivity is changed and
it becomes imaginary, i.e. reactive, and therefore the conductance becomes nondissipative,
and the slow wave (the slow SP) appears. With a further increase of frequencyω, near
the doubled CR (ω ∼ 2�), the spatial dispersion effects of the conductivity equation (2.14)
become noticeable, and the group velocity changes its sign and takes negative values. In
this region the SP shows anomalous (negative) dispersion.
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The SP spectrum near the CR subharmonic (ω ∼ 2�) is obtained in the form

ω = 2� − �
b

d

(
k`

2

)2(
1 + ℵ

2

)
− iν. (3.12)

Here

b = vn

c

(
4π

3

)(
�

cp

)(
1 − p2

2c
2

4ε�

)
. (3.13)

Also d = 1 + 2b and

p2 =
√

k2 − 4�2

c2
ε.

For ω > 2� the SP propagates through the system at a velocity close to that of the SP
far away from the doubled CR (see figure 3). It can be seen from equation (3.12) that the
spectrum of the SP is ‘strongly pressed’ to the line of the CR subharmonic (ω = 2�). The
relative dispersive width of the SP has the scale of the small parameter ¯h�/mc2 � 1 near
the CR. This dispersion curve (see the inset in figure 3) of the SP starts near the fundamental
mode of the light line (ω = kvd ), then it is branched (the number of branches is equal to
the Landau-level filling factorℵ), and the group velocity is quantized in the same way as
near the principal CR (ω = �). But the group velocity is very low,vg ∼ vd(h̄�/mc2), in
the wavenumber region where the dispersion curve is ‘strongly pressed’ to the lineω = 2�.
The spectrum of the SP ‘slides’ near the linek ' ε�/vn. At such values ofk the spectral
curve is detached from the lineω = 2� (see figure 3). The relative attenuation rate of
the SP is of the orderν/ω and is small for samples with a high electron mobility. At low
frequencies (ω � �) the SP is a wave of the TE type, changing to TM type forω > �.
The SP polarization is defined by the following expression:

A = A0

( 1
q

0

)
e−p|z| ei(k·r−ωt). (3.14)

The vector potential components are interrelated asAy = qAx , Az = 0, and the scalar
potentialϕ is given by the Lorentz gauge (3.1). The polarization parameterq is

q =
{

1 − 2π iω

c2p

[
σxx

(
1 − c2k2

x

εω2

)
− c2

ω2
σxykxky

]}/{
σxy

(
1 − c2k2

y

εω2

)
− c2

εω2
σxxkxky

}
.

(3.15)

It is easy to see that the SP polarization under the QHE conditions is sensitive to the terms
sin(2β) and cos(2β) of equations (2.14) and (2.15). This leads to rotation of the polarization
plane as a function of the magnetic fieldB. Far from the CR, where the spatial dispersion
of conductivity is negligible, the polarization parameterq takes the simpler form

q = cp

ω

{
−i

c

vn

(1 + γ 2)

2π
+ cp

εω
γ

}
. (3.16)

It is evident that the polarization parameterq is quantized due to the Hall quantization.
In the system under consideration (see figure 1) another SP exists, which appears near

the CR (ω ∼ �). This SP is a dissipative-type wave. The surface wave exists when
Rep > 0. When the relaxation frequencyν 6= 0, the frequencyω is a complex value.
A straightforward analysis shows that the additional (dissipative) SP mode is practically
nondispersional, and the condition for its existence is determined by the threshold condition

ν

�
> 2α

ℵ√
ε
. (3.17)
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Figure 4. Dynamics of the SP and ASP spectra (ω
′
) (solid line), SP damping (ω

′′
) (dashed

line), and ASP damping (ω
′′
) for various values ofℵ andν/� (see the explanation in the text).

In other words, the influence of dissipation on the SP dispersion properties is manifested
in new interesting features. Whenν exceeds a critical value (see (3.17)), the SP dispersion
curve is split into two branches. One of these practically coincides with the ‘light line’
(ω

′ = ck/
√

ε) and has the end-point of the spectrum Rep = 0. At that point the SP field
is delocalized. It is easy to see that the threshold condition for the appearance of an ASP
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Figure 4. (Continued)

(additional surface polariton) in a high magnetic field is determined by the fine-structure
constant and the quantized value of the Landau-level filling factor. Thus, the threshold
condition for the existence of ASP in a high magnetic field is quantized due to the Hall
quantization. The conductivity spatial dispersion of the 2DES in high magnetic fields (2.14)
does not significantly influence either the ASP threshold condition or the ASP spectrum and
damping.
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Figure 4. (Continued)

The dispersion curve of the additional (dissipative) SP is shown in figure 4.
Thus, the observation of such a wave specifies the relaxation frequency to an accuracy

of up to the fine-structure constantα.
Figure 4(a) (ℵ = 1; ν/� = 0.01) shows that at such values of the relaxation frequencyν

an ASP appears, which has an end-point of the spectrum defined by the condition Rep = 0.
The SP damping increases sharply near the CR, where the SP drastically decelerates. The
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damping of the ASP is sharply decreased and approaches zero, when it tends to the end-
point of the spectrum. The ASP exists on the left-hand side of the ‘light line’ω = kvd ,
being in fact a delocalization wave because it is ‘weakly pressed’ to the 2DES. The SP is a
proper surface wave, which is ‘strongly pressed’ to the 2DES far from the principal mode
(the ‘light line’ ω = kvd ).

Figure 4(b) (ℵ = 1; ν/� = 0.2) shows the spectra of the ASP and SP, whenν is
increased. At such values ofν the spectrum is essentially modified. A gap opens in the
spectrum. This gap is brought about by the end-point in the spectrum of the low-frequency
SP (ω < �) and the blending of the ASP with the decelerated SP. The low-frequency SP
becomes a completely delocalized wave; it is practically not connected to the 2DES. The
damping of the new blended mode (ASP and SP) has a fixed valueν/� over a wide range
of the wavenumbersk.

Figure 4(c) (ℵ = 5; ν/� = 0.1) shows the spectral curves for lower magnetic fields
(when the Landau-level filling factor isℵ = 5). The ASP is blended with the decelerated
part of the SP near the principal CR. The low-frequency part of the principal mode of the
SP (ω = kvd ) is separated from the ASP, and its spectrum (Reω = ω′ = ω(k)) ends at the
point where Rep = 0. The principal modeω = kvd is ‘weakly pressed’ to the 2DES for
all the values of� and k because Rep � Im p. But the decelerated parts of the SP and
ASP (the upper curve in 4(c)) are ‘strongly pressed’ to the 2DES, since for this part of the
spectrum Rep � Im p. In other words, the slow SP and ASP are proper surface waves.

Figure 4(d) (ℵ = 5; ν/� = 0.2) shows a picture of spectral curves when the relaxation
frequencyν is greater than that of figure 4(c). The end-point for the principal SP mode
(ω = kvd ) is moved down off the ASP and slow SP spectral curve. In this picture only
the real parts of the spectral curves cross, while the imaginary partsω′′ of the frequencies
assume different values [25].

The spectral picture of the ASP changes crucially at larger values of the Landau-level
filling factor (see figure 4(e):ℵ = 10; ν/� = 0.1). First, the curves of the ASP and
slow SP are separated, and second, the ASP curve acquires an end-point of the spectrum
(Rep = 0). It is significant that the spectrum shows an anomalous (negative) dispersion
near the CR and an end-point of the ASP. At high values of the relaxation frequency (see
figure 4(f): ℵ = 10; ν/� = 0.2) the picture of the dispersion curves is of the same kind as
in figure 4(d), whenℵ = 5 andν/� = 0.2.

The curves for the SP damping in the series of pictures in figure 4 are qualitatively
similar. The negative damping of the SP becomes essential and is of orderν/� near the
CR, where the SP is drastically decelerated. The damping of the ASP is sharply diminished
in the vicinity of the point where Rep = 0, and tends to zero. The damping of the
principal SP mode (ω = kvd ) becomes vanishingly small when the relaxation frequencyν

is increased. This is due to the fact that the 2DES has a small conductivity (it transforms to
a dielectric) and the surface wave is separated from the 2DES to become a quasibulk mode.

4. Conclusion

In conclusion, we have calculated explicitly the collective-mode spectrum, damping and
polarization in a 2DES in a high magnetic field—the slow surface polaritons, where the
quantization is essential. We used the Wigner distribution function formalism for the
calculation of the spatial and frequency dispersion of conductivity for the 2DES in a
high magnetic field. Near the CR the phase velocity of a SP drastically slows down
and the group velocity of SP is quantized into fundamental steps whose magnitude is
determined by fine-structure constant and the integer Landau-level filling factor. In other
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words, in a high magnetic field under the quantum Hall effect conditions, the dispersion
curves of the SP in a 2DES are also quantized. Besides this, due to the spatial dispersion
of the conductivity at high frequencies, the group velocity of the SP becomes negative
(anomalous dispersion) near the CR subharmonics. When the relaxation frequency exceeds
the critical threshold, condition (3.17), in the 2DES, an ASP arises—a new mode of surface
electromagnetic oscillation. As a consequence, the dispersion curves of the SP and ASP
change significantly—the spectrum end-points appear and modes become confluent.

To conclude, it should be emphasized that the phase velocity of the SP takes a remarkably
small value near the CR. In other words, the 2D electronic layer under the QHE conditions
is an effectively decelerating system. This fact can be used for various applications in
microelectronics. For example, it can be used for the excitation of surface electromagnetic
waves by a beam of charged particles passing near a 2D electronic layer and for efficient
conversion of the beam energy into the energy of waves.
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